Computing High Dimensional Integrals with Applications to Finance
نویسنده
چکیده
High-dimensional integrals are usually solved with Monte Carlo algorithms although theory suggests that low discrepancy algorithms are sometimes superior. We report on numerical testing which compares low discrepancy and Monte Carlo algorithms on the evaluation of nancial derivatives. The testing is performed on a Collateralized Mortgage Obligation (CMO) which is formulated as the computation of ten integrals of dimension up to 360. We tested two low discrepancy algorithms (Sobol and Halton) and two randomized algorithms (classical Monte Carlo and Monte Carlo combined with antithetic variables). We conclude that for this CMO the Sobol algorithm is always superior to the other algorithms. We believe that it will be advantageous to use the Sobol algorithm for many other types of nancial derivatives. Our conclusion regarding the superiority of the Sobol algorithm also holds when a rather small number of sample points are used, an important case in practice. We built a software system which runs on a network of heterogeneous workstations under PVM 3.2 (Parallel Virtual Machine). Since workstations are ubiquitous, this is a cost-e ective way to do very large computations fast. The measured speedup is at least :9N for N workstations, N 25. The software can also be used to compute high dimensional integrals on a single workstation. 2
منابع مشابه
Why Are High-Dimensional Finance Problems Often of Low Effective Dimension?
Many problems in mathematical finance can be formulated as highdimensional integrals, where the large number of dimensions arises from small time steps in time discretization and/or a large number of state variables. Quasi-Monte Carlo (QMC) methods have been successfully used for approximating such integrals. To understand this success, this paper focuses on investigating the special features o...
متن کاملDimension-wise integration of high-dimensional functions with applications to finance
We present a new general class of methods for the computation of high-dimensional integrals. The quadrature schemes result by truncation and discretization of the anchored-ANOVA decomposition. They are designed to exploit low effective dimensions and include sparse grid methods as special case. To derive bounds for the resulting modelling and discretization errors, we introduce effective dimens...
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملThree-Dimensional Interfacial Green’s Function for Exponentially Graded Transversely Isotropic Bi-Materials
By virtue of a complete set of two displacement potentials, an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic bi-material full-space was presented. Three-dimensional point-load Green’s functions for stresses and displacements were given in line-integral representations. The formulation included a complete set of transformed stress-p...
متن کاملMultivariate Integral Perturbation Techniques - I (Theory)
We present a quasi-analytic perturbation expansion for multivariate N dimensional Gaussian integrals. The perturbation expansion is an infinite series of lower-dimensional integrals (one-dimensional in the simplest approximation). This perturbative idea can also be applied to multivariate Student-t integrals. We evaluate the perturbation expansion explicitly through 2 order, and discuss the con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994